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When different approaches to a certain subject are
ripe enough, this is usually a good moment for an
attempt to compare them and to unify different paths
into one well-paved way. However this usually
requires a hard work and is often a nonprofit activity.
The hard thing is finding a common language and
good notation, in which all these different approaches
could be nicely expressed. And often it appears that
what one gets looks like a simple exercise or is a part
of the unwritten folk knowledge. Nevertheless some-
one has to do such a job, as this is a necessary step in
building up a foundation of a higher level theory.

Kotta and Mullari have undertaken a job of com-
paring different realization methods for higher order
nonlinear input–output differential equations. By
realization of the equation

yðnÞ ¼ ’ðy, _yy, . . . , yðn�1Þ, u, _uu, . . . , uðsÞÞ ð1Þ

they mean a state space representation of the form

_xx ¼ Fðx, uÞ ð2aÞ
y ¼ hðx, uÞ: ð2bÞ

where the state x evolves inR
n. Moreover they want to

express x as a function of y, _yy, . . . , yðn�1Þ, u, _uu, . . . , uðsÞ,
which constitutes a more algorithmic part of the
theory. However the authors do not say precisely
when (2) is a realization of (1). This is probably caused
by a more technical or operational understanding
of the subject, which is present throughout the paper.

As a mathematician I would rather recall van der
Schaft’s definition which can be found in Ref. [4] –
one of the sources of the discussed article. Namely,
(2) is a realization of (1) if the (external) behaviors
of the two systems coincide, where the behavior of
(1) or (2) is the set of all pairs (u,y) that satisfy (1) or
(2) (for some trajectory x), respectively. The functions
u and y may be defined on the whole real line as in
Ref. [4], or only for t � 0, or on different intervals
depending on (u,y). Another vague concept is locality
of the realization, which appears in Ref. [4] and
is repeated in the paper by Kotta and Mullari
(Theorem 2). ‘‘Locally’’ means in a neighborhood of a
point, but it is not clear which point.

An interesting problem is the class of functions that
describe the systems and appear in later constructions.
The function ’ in (1) is assumed to be smooth, but
nothing is said of F and h in (2). This is one of the weak
points of the paper. Sewing up two different lan-
guages, this of Ref. [4] using vector fields and that of
Ref. [3] relying on differential forms, appears not as
seamless as it could be. The smooth category is natural
in the first case, while the differential forms exploited
in Ref. [3] have coefficients in the field of mer-
omorphic functions of variables y, _yy, . . . , yðn�1Þ, u,
_uu, . . . , uðsþ1Þ. To make sense of the construction of the
spaces Hk (Section 3.1 of the discussed paper) one has
to assume that the vector field

f¼ _yy
@

@y
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(understood as a differential operator) has mero-
morphic coefficients, so ’ should be meromorphic.E-mail: bartos@pb.bialystok.pl



Moreover, the consistent language of Lie derivatives
(of vector fields, differential forms and functions)
used in most of the paper is compromised in the
definition of Hk, where the time derivative of differ-
ential one-forms is used. To get it work one would
have to consider also all the derivatives of the
variable v. This of course leads to infinitely many
variables, but such a construction is a commonly used
solution to this problem (in particular in other Kotta’s
papers). The time derivatives appear also in the
proof of Lemma 1, but now also the distributions
spanned by vector fields are differentiated with respect
to time. This operation was never defined. Looking at
calculations one could guess that this is the same as
the Lie derivative Lf. Thus the time derivative (of
geometric objects) seems to be one of the unnecessary
concepts that makes the language of the paper
imperfect and makes it difficult for the reader to enjoy
reading.

Once the reader straightens up the bends of the
language, she/he can appreciate the main results of the
paper. One says that two characterizations of realiz-
ability are equivalent. Another states that two differ-
ent algorithms for computing bases of the spaces Hk

give the same results. A detailed example shows
almost all the objects that appear in the paper (no time
derivatives). The function ’ in the example is poly-
nomial and so is the realization. A natural question
arises: is it incidental or generic? The realization is
global, contrary to locality asserted in Theorems 1
and 2. How often does this happen?

One of the things that the authors forgot to write
about is the regularity assumption. The distributions
Sk and the codistributions Hk must have constant

dimensions (may be locally) if the statements of
Theorems 1 and 2 are to hold. Also observability
asserted in these theorems should be understood in the
(local) regular sense (i.e. fulfilment of the Hermann–
Krener rank condition [1]). If these regularity
assumptions are violated, the theory becomes more
complicated. For example, if the dimension of the
observability codistribution is not constant, one may
not be able to reduce the state space in order to obtain
an observable realization as this would lead to a state
space that is no longer a manifold.

Only realizations of higher-order differential
equations were studied in the paper. Another pro-
blem, much older and more studied, is the problem
of realization of an input–output map. Also for this
problem many different approaches have appeared.
The paper of B. Jakubczyk [2] studies connections
between these approaches and plays a role in similar
to the in role the discussed article.
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